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Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-842 28 Bratislava,
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Abstract. The classical two-dimensional anisotropic triangular nearest-neighbour Ising (ATNNI)
model is studied by the density matrix renormalization group (DMRG) technique when periodic
boundary conditions are imposed. Applying the finite-size scaling to the DMRG results, a
commensurate–disordered (CD) phase transition line as well as temperature and magnetic critical
exponents are calculated. We conclude that the CD phase transition in the ATNNI model belongs
to the same universality class as the ordered–disordered phase transition of the Ising model.

Analysis of semi-finite systems of small size in one or more directions has been used as
a powerful tool in extracting critical properties of 2D classical models and corresponding
1D quantum models. Although finite or 1D systems themselves do not display any critical
behaviour, it is, however, possible to extract critical parameter values as well as critical
exponents. Temperature, ordering magnetic field and finite-size deviations from criticality
are all described by the same set of the critical exponents [1]. This paper is focused on infinite
strips of finite width where the relevant numerical data are obtained from the transfer matrix
methods, in particular, the density matrix renormalization group (DMRG) method.

In 1992 the DMRG technique was invented by White [2] in real space for 1D quantum
spin Hamiltonians. Three years later Nishino [3] applied this numerical technique to classical
spin 2D models based on the renormalization group transformation for the transfer matrix for
the open boundary conditions. DMRG treatment of 2D classical systems exceeds the classical
Monte Carlo approach in accuracy, speed and size of the systems [4].

Recently, we have modified the DMRG method for the 2D classical models, imposing
periodic boundary conditions (PBCs) on strip boundaries, and found a relation that helped to
determine an optimal strip width Lopt in order to obtain correct values of critical temperature and
exponents [5] using finite-size scaling (FSS). We have obtained results of very high accuracy
exceeding the DMRG method with standard open boundary conditions. Our method does not
require any extrapolation analysis of the data.

The use of DMRG for 2D classical models may follow one of two different approaches:
(i) the DMRG method is applied to strips of finite width and, from two largest transfer-matrix
eigenvalues or the free energy estimated with high precision, the critical properties of the
system are calculated by the FSS analysis (here, we use this approach).

(ii) The strip width is enlarged until a steady state is reached (in the thermodynamic limit)
when the output from the DMRG does not depend on the lattice size. Then, the DMRG yields
properties of the 2D infinite system with spontaneously broken symmetry and mean-field-like
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behaviour close to the criticality. This approach was used recently to study the high-field part
of the anisotropic triangular nearest-neighbour Ising (ATNNI) model phase diagram [6], where
approach (i) ran into convergence problems. We were able to show that the phase transition
between the commensurate phase and the disordered phase proceeds via a narrow strip of an
incommensurate phase. This approach also gives accurately the low-field part of the phase
diagram, but it is not convenient for determination of the critical properties of the system by
FSS. In distinction to the finite-width approach (i), it explicitly undergoes the phase transition,
but its critical behaviour is mean-field-like and the speed of calculation suffers from critical
slowing-down at the phase transition line. Therefore, we use here approach (i) to find the
low-field critical behaviour of the ATNNI model.

The FSS approach should give the correct critical properties of the system in the limit of
infinite strip width. Nevertheless, it was shown in [5] that in the approximate DMRG treatment
for given size of the transfer matrix (limited by computer capacity), it is not useful to enlarge the
strip width to too large values, because here the the DMRG results do not satisfy the scaling
laws assumed by the FSS. Thus, an optimal width, up to which the results systematically
improve, must exist. It was also shown that the estimation of critical properties of the Ising
and Potts models by DMRG with the periodic boundary conditions are much better than those
with the open ones, although the latter yields better results for the finite-width strips [5].

Below the optimal strip width Lopt the ratio

R ≡
∂

∂L
T ∗

C (L)

∂2

∂L2 T
∗

C (L)
(1)

is an almost linear function of L while, above it, it is not. (L in (1) is the width of the strip and
T ∗

C (L) is the critical temperature for given L.)
The deviation of R from linearity above the optimal strip width is very fast and the ratio R

becomes zero or infinity within enlargement of the strip by one lattice constant. Thus, if R = 0
or R → ∞ (i.e. if the numerator or the denominator tends to zero or changes its sign), we
accept L as the strip width for further calculations and call it the optimal width Lopt of the strip.
The critical temperature for the optimal width T ∗

C (Lopt) is taken as the best approximation of
the critical temperature of the 2D system studied, and at this temperature the critical exponents
of the system are calculated. The values of the critical exponents are sensitive to T ∗

C and must
be determined with due care.

In the FSS approach, the critical exponents are derived from the scaling behaviour of the
correlation length and free energy at the critical point, where they depend on strip width L in
the following way [1]:

Kh
L ∼ L2y

(β)

h KT
L ∼ Ly

(ν)
T cL ∼ L2y

(α)
T −d (2)

where KT
L and Kh

L are the derivatives of inverse correlation length K with respect to temperature
T and the second derivative with respect to ordering (magnetic) field h, respectively, and cL

is the specific heat, i.e. the second derivative of the free energy with respect to temperature.
The two temperature exponents y

(α)
T and y

(ν)
T should be equal to each other. The exponents yT

and yh determine the critical behaviour of all statistical quantities characterizing the system.
The critical exponents of specific heat, magnetization and correlation length can be calculated
from yT and yh as follows: α = 2 − 2

yT
, β = 2−yh

yT
and ν = y−1

T . Other critical exponents can
be obtained from the scaling equations yh = β + γ , γ = β(δ − 1) and η = 2 − γyT [7].

Further, we demonstrate the capabilities of our approach to find the critical properties of
the 2D spin lattice model on the Ising model with different symmetries of the lattice, where
critical temperatures and critical indices are known from exact solutions, and the ATNNI
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Figure 1. (a) The triangular lattice of the ATNNI model. (b) The phase diagram of the ATNNI
model for a = 0.4 obtained by the DMRG method [6].

model where the phase diagram is generally unknown and the critical indices are predicted
from symmetry considerations.

The 2D classical ATNNI model is given by the Hamiltonian

H =
∑

i

−J

( ∑
δ̂=1̂,2̂

σiσi+δ̂ + aσiσi+3̂

)
− H

∑
i

σi (3)

with the antiferromagnetic coupling J < 0 and spins σi = ±1. The numbers 1̂, 2̂ and 3̂
are lattice directions in the ATNNI model. The coupling J is multiplied by the parameter a

(0 < a < 1) along the direction 3̂ as depicted in figure 1(a).
This model was studied by Domany and Schaub [8] and in [6], and it was shown that

its phase diagram, as a plot of temperature T and external magnetic field H (for a = 0.4),
exhibits four different phases: two commensurate phases 〈I 〉 and 〈II 〉, a disordered phase
and an incommensurate phase (see figure 1(b)). Commensurate phase 〈I 〉 occurs at magnetic
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Table 1. Critical temperatures T ∗
C obtained from (1) with DMRG compared with the exact ones

T
(exact)

C . The symbols � and � describe square and triangular lattices, respectively.

Model H T ∗
C T

(exact)
C

� Ising 0.0 2.269 1851 2.269 1853
� AF Ising 0.0 2.269 1848 2.269 1853
� Ising 0.0 3.640 955 3.640 957
� ATNNI 0.0 1.553 52 1.553 62
� ATNNI 0.5 1.528 67 unknown
� ATNNI 1.0 1.451 35 unknown
� ATNNI 1.5 1.311 05 unknown
� ATNNI 2.0 1.070 09 unknown

field H < 2.4. This structure satisfies the Lifshitz condition, and it is characterized by a 1D
representation of the lattice symmetry group, i.e. its phase transition is predicted to belong
to the Ising universality class [9]. Domany and Schaub tried to confirm this prediction by
numerical calculation of the exponent yT , but due to the low-order approximation it differed
from the expected value by more than 10% and the magnetic exponent was not calculated at
all.

We have calculated critical properties of the ATNNI model at the phase transition line
between the commensurate 〈I 〉 and the disordered phase. To illustrate the accuracy of the
method, we have calculated critical properties of the exactly solvable models: ferromagnetic
and antiferromagnetic Ising models on square and triangular lattices at zero magnetic field as
well as the zero-magnetic-field ATNNI model, for which the critical temperature is given by
the equation [10]

sinh2

(
2J

TC

)
= exp

(
−4aJ

TC

)
. (4)

We have used the FSS analysis of DMRG results with a superblock consisting of eight Ising
spins and four multi-spin variables, each acquiring 85 values (m = 85). The computational
effort at this approximation is less than for the classical transfer matrix method of strip width
equal to 17 lattice constants. However, the DMRG enables us to treat a wider strip (of tens of
lattice constants) up to the optimal width, further improving the values of the critical parameters.

The first, important step of the calculations is determination of the critical temperature
T ∗

C (see table 1), of which the best estimation for given m is T ∗
C (Lopt) calculated from the FSS

approach [5]. At this temperature the values of the critical exponents are derived from the
scaling laws (2).

As the quantities appearing in (2) are first and second derivatives of the free energy and
correlation length, the effect of approximation starts to be manifest at a strip width lower than
Lopt. The criterion determining the strip width at which the value of the critical exponent
may be still acceptable was taken as completely analogous to that for critical temperature,
equation (1). The accepted values of the critical exponents are denoted by filled symbols in
figures 2(a) and (b).

The critical exponent yT is determined more precisely from the free energy y
(α)
T than from

the correlation length y
(ν)
T , as for the evaluation of the former only the largest eigenvalue of the

superblock matrix is needed in distinction to the correlation length, calculation of which the
ratio of the largest and the second largest eigenvalue is necessary. This point is irrelevant for
the models with a symmetric transfer matrix (Ising models in table 1), but significant for the
ATNNI model with a non-symmetric transfer matrix [11]. The plot of thermal critical exponent
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Figure 2. (a) The plot of thermal critical exponents y
(α)
T for different fields in the ATNNI model.

(b) The plot of magnetic critical exponents y
(β)
h . The filled symbols denote the accepted critical

exponents satisfying equation (1).

y
(α)
T versus strip width is shown in figure 2(a). For increasing lattice size they both tend to the

Ising value 1. The convergence also depends on the magnetic field. It worsens for magnetic
field close to the multi-critical point H = 2.4. Here the reliability of the DMRG breaks down
at rather small strip width, as well. The accepted values depicted by black symbols are listed
in table 2.

The critical exponent y(β)

h describes the decay of the order parameter at the phase transition
line from the commensurate phase 〈I 〉 to the disordered phase. The structure 〈I 〉 consists of
two ferromagnetically ordered sublattices each with different magnetization. As the external
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Table 2. Critical exponents of various 2D spin models calculated by the DMRG method with PBC
and FSS analysis. The exact critical exponents of the Ising models are as follows: yT = 1 and
yh = 1.875.

Model H y
(α)
T y

(ν)
T y

(β)
h α β ν

� Ising 0.0 1.000 0009 0.999 999 94 1.875 002 0.000 0017 1
8.000 12 1.000 000 06

� AF Ising 0.0 1.000 0009 0.999 999 94 1.875 126 0.000 0017 1
8.008 04 1.000 000 06

� Ising 0.0 1.000 0014 0.999 999 43 1.875 030 0.000 0027 1
8.001 92 1.000 000 57

� ATNNI 0.0 1.000 0022 0.994 7 1.870 05 0.000 004 1
7.70 1.005 27

� ATNNI 0.5 1.000 0280 0.990 2 1.870 98 0.000 056 1
7.75 1.009 93

� ATNNI 1.0 1.000 0580 0.990 2 1.870 62 0.000 116 1
7.73 1.009 93

� ATNNI 1.5 1.000 0767 0.991 1 1.869 39 0.000 153 1
7.66 1.008 93

� ATNNI 2.0 0.999 8366 1.012 2 1.869 02 0.000 327 1
7.63 0.987 95

magnetic field H is generally non-zero in the ATNNI model, the total magnetization (sum
of both sublattice magnetizations) is non-zero, as well. The difference between the two
magnetizations is taken as the order parameter in this case. The small ordering field h used
for calculation of the derivative Kh

L acquires the opposite sign at each of the two sublattices.
The accuracy of the calculations of the magnetic exponent is smaller than that of the thermal
exponent in the case of the exactly solvable models listed in table 2. Thus, we can expect a
lower accuracy also for the ATNNI model. All the exponents depicted in figure 2(b) are below
1.871. Extrapolations to L → ∞ for H = 0.5–1.5 give values of y

(β)

h of about 1.872, i.e.
β = 1

7.81 , which still differs from the Ising value y
(β)

h = 1.875 and corresponding β = 1
8 .

Note that the value of y
(β)

h is extremely sensitive to the correct determination of the critical
temperature. A very small decrease of its value would shift y

(β)

h to the expected Ising value.
At modest magnetic field, where our calculations are assumed to be more accurate, the plots
of y

(β)

h for different magnetic field lie on the same curve, which suggests that not only is y
(β)

h a
universal quantity independent of H , but the corrections to it for finite L are universal, as well.

In conclusion, it can be stated that the DMRG method with periodic boundary conditions
reproduces with a high accuracy the critical properties of exactly solvable models and confirms
the prediction that the CD phase transition for magnetic fields H = 0–2.4 belongs to the
universality class of the Ising model.
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